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Abstract

In the present paper, we introduce a numerical solution algorithm based
on a Petrov-Galerkin method in which the element shape functions are cubic
B-splines and the weight functions quadratic B-splines . The motion of a sin-
gle solitary wave and interaction of two solitary waves are studied. Accuracy
and efficiency of the proposed method are discussed by computing the nu-
merical conserved laws and L2 , L∞ error norms. The obtained results show
that the present method is a remarkably successful numerical technique for
solving the modified equal width wave(MEW) equation. A linear stability
analysis of the scheme shows that it is unconditionally stable.

1 Introduction

The present study is concerned with one-dimensional modified equal width wave
(MEW) equation

Ut + 3U2Ux − µUxxt = 0, (1)

with the physical boundary conditions U → 0 as x → ±∞, where t is time, x
is the space coordinate, µ is a positive parameter and U(x, t) is wave amplitude.
The MEW equation, which we discuss here, is related with the modified regular-
ized long wave (MRLW)equation [1] and modified Korteweg-de Vries (MKdV)
equation [2] and is based upon the equal width wave (EW) equation. This equa-
tion has solitary wave solutions with both positive and negative amplitudes, all
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of which have the same width. The MEW equation is a non-linear wave equa-
tion with cubic nonlinearity with a pulse-like solitary wave solution [3]. The
MEW equation with a limited set of boundary and initial conditions has an ana-
lytical solutions. Therefore numerical solutions of the MEW equation have been
the subject of many papers. Zaki considered the solitary wave interactions for
the MEW equation by Collocation method using quintic B-spline finite elements
[4] and obtained the numerical solution of the EW equation by using the least-
squares method [5]. Variational iteration method is introduced to solve the MEW
equation by Junfeng Lu [6]. Wazwaz investigated the MEW equation and two of
its variants by the tanh and the sine-cosine methods [3]. Esen applied a lumped
Galerkin method based on quadratic B-spline finite elements have been used for
solving the EW and MEW equation[7, 8]. Saka proposed algorithms for the nu-
merical solution of the MEW equation using quintic B-spline collocation method
[9]. A. Esen and S. Kutluay studied a linearized implicit finite difference method
in solving the MEW equation [10]. D. J. Evans, and K. R. Raslan [11] studied the
generalized equal width (GEW) equation by using collocation method based on
quadratic B-splines to obtain the numerical solutions of a single solitary waves,
and the birth of solitons. K. R. Raslan [12] obtained the numerical solutions of the
GEW equation by collocation method using cubic B-spline. T. Geyikli and S. Bat-
tal Gazi Karakoç [13, 14, 15] obtained the numerical solution of the MEW equa-
tion with septic B-spline collocation method, a lumped Galerkin method based
on cubic B-spline finite element method and subdomain method using quartic
B-spline functions. L. R. T. Gardner, G. A. Gardner and T. Geyikli [16] solved the
KdV equation numerically by a Petrov-Galerkin method and results are almost
nearly equal to exact solutions. Abdulkadir Doğan[17] studied the RLW equation
numerically using the Petrov-Galerkin method and obtained accurate results. In
this paper, we have applied a lumped Petrov-Galerkin method in which the ele-
ment shape functions are cubic B-splines and the weight functions are quadratic
B-splines. The performance and accuracy of the proposed method have been
tested on two problems: the motion of a single solitary wave and the interac-
tion of two solitary waves. A linear stability analysis based on a Fourier method
shows that the numerical scheme is unconditionally stable.

2 Cubic B-spline Petrov-Galerkin method

For the numerical treatment, the solution domain of the problem is restricted over
an interval a ≤ x ≤ b. Consider the equation (1) with the boundary conditions

U(a, t) = 0, U(b, t) = 0,
Ux(a, t) = 0, Ux(b, t) = 0, t > 0,

(2)

and the initial condition

U(x, 0) = f (x), a ≤ x ≤ b

where f (x) is a prescribed function. Physical boundary conditions require U
and Ux → 0 that U → 0 for x → ±∞. The finite interval [a, b] is partitioned



Petrov-Galerkin method with cubic B-splines for solving the MEW equation 217

into N finite elements of equal length h by the nodes xm such that a = x0 <

x1 · · · < xN = b and h = (xm+1 − xm). The cubic B-splines φm(x) , (m= -1(1)
N+1), at the knots xm which form a basis over the interval [a, b] are defined by the
relationships [18]

φm(x) =
1
h3







































(x − xm−2)
3, x ∈ [xm−2, xm−1],

h3 + 3h2(x − xm−1) + 3h(x − xm−1)
2

−3(x − xm−1)
3 x ∈ [xm−1, xm],

h3 + 3h2(xm+1 − x) + 3h(xm+1 − x)2

−3(xm+1 − x)3, x ∈ [xm, xm+1],
(xm+2 − x)3, x ∈ [xm+1, xm+2],
0 otherwise.

(3)
The numerical solution UN(x, t) is expressed in terms of the cubic B-splines and
unknown time dependent parameters as

UN(x, t) =
N+1

∑
j=−1

δj(t)φ j(x) (4)

where δ j are time dependent quantities to be determined from the boundary and
weighted residual conditions. Each cubic B-spline covers 4 elements so that each
element [xm, xm+1] is covered by 4 splines. In terms of a local coordinate system
η given by

hη = x − xm 0 ≤ η ≤ 1 (5)

so the cubic B-spline shape functions over the element [xm, xm+1] can be defined
as

φm−1 = (1 − η)3,
φm = 1 + 3(1 − η) + 3(1 − η)2 − 3(1 − η)3,
φm+1 = 1 + 3η + 3η2 − 3η3,
φm+2 = η3.

(6)

All splines apart from φm−1(x), φm(x), φm+1(x) and φm+2(x) are zero over the
element [xm, xm+1]. Over the typical element [xm, xm+1], the numerical solution
UN(x, t) is given by

UN(x, t) =
m+2

∑
j=m−1

φj(x)δ j(t) (7)

where δm−1, δm, δm+1, δm+2 act as element parameters and B-splines φm−1, φm,
φm+1, φm+2 as element shape functions. Using trial function (4) and cubic splines
( 3), the values of U, U′, U′′ at the knots are determined in terms of the element
parameters δm by

Um = U(xm) = δm−1 + 4δm + δm+1,

U′
m = U′(xm) =

3
h (−δm−1 + δm+1),

U′′
m = U′′(xm) =

6
h2 (δm−1 − 2δm + δm+1),

(8)

where the symbols ′ and ′′ denotes first and second differentiation with respect to
x, respectively. The splines φm(x) and its two principle derivatives vanish outside
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the interval [xm−2, xm+2]. The weight function W(x) is taken a quadratic B-spline
Ψm. Quadratic B-spline Ψm at the knots xm are defined over the interval [a, b] by

Ψm(x) =
1
h2















(xm+2 − x)2 − 3(xm+1 − x)2 + 3(xm − x)2, [xm−1, xm]
(xm+2 − x)2 − 3(xm+1 − x)2 [xm, xm+1]
(xm+2 − x)2 [xm+1, xm+2]
0 otherwise.

(9)

Using the local coordinate transformation (5) for the finite element [xm, xm+1]
quadratic B-spline shape functions can be defined as

Ψm−1 = (1 − η)2,
Ψm = 1 + 2η − 2η2,
Ψm+1 = η2.

(10)

When the Petrov-Galerkin approach is applied to Eq.(1), we obtain the weak form
of (1)

∫ b

a
W(Ut + 3U2Ux − µUxxtdx) = 0. (11)

Using transformation (5), equation(11) for the typical element [xm, xm+1] becomes

∫ 1

0
W

(

Ut +
3

h
Û2Uη −

µ

h2
Uηηt

)

dη = 0 (12)

where Û is taken to be a constant over the element [xm, xm+1] to simplify the
integral. Integrating equation (12) by parts and using Eq.(1)leads to

∫ 1

0
[W(Ut + λUη) + βWηUηt ]dη = βWUηt|

1
0 (13)

where λ = 3Û2

h and β = µ

h2 . Taking the weight function W(x) = Ψm with

quadratic B-spline shape functions given by equation (10) and substituting ap-
proximation (7)into integral equation (13), we obtain the element contributions
in the form

m+2

∑
j=m−1

[(
∫ 1

0
Ψiφj + βΨ′

iφ
′
j)dη − βΨiφ

′
j|

1
0 ]δ̇

e
j +

m+2

∑
j=m−1

(λ
∫ 1

0
Ψiφ

′
jdη)δe

j (14)

which can be written in matrix form as follows:

[Ae + β(Be − Ce)]δ̇
e
+ λDeδe (15)

where δe = (δm−1, δm, δm+1, δm+2)
T are the element parameters and the dot de-

notes differentiation with respect to t. The element matrices Ae, Be, Ce and De are
rectangular 3 × 4 given by the following integrals:

Ae
ij =

∫ 1

0
Ψiφjdη =

1

60





10 71 38 1
19 221 221 19
1 38 71 10




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Be
ij =

∫ 1

0
Ψ′

iφ
′
jdη =

1

2





3 5 −7 −1
−2 2 2 −2
−1 −7 5 3





Ce
ij = Ψiφ

′
j|

1
0 =

3

1





1 0 −1 0
1 −1 −1 1
0 −1 0 1





De
ij =

∫ 1

0
Ψiφ

′
jdη =

1

10





−6 −7 12 1
−13 −41 41 13
−1 −12 7 6





where i takes only the values 1, 2, 3 and the j takes only the values m − 1, m, m +
1, m + 2 for the typical element [xm, xm+1]. A lumped value for λ is found from
1
4(Um + Um+1)

2 as

λ =
3

4h
(δm−1 + 5δm + 5δm+1 + δm+2)

2.

Assembling all contributions from all elements leads to the following matrix equa-
tion

[A + β(B − C)]δ̇ + λDδ = 0 (16)

where δ = (δ−1, δ0, ..., δN, δN+1)
T is a global element parameters. The matrices

A, B and λD are rectangular and row m of each has the following form:

A = 1
60(1, 57, 302, 302, 57, 1, 0),

B = 1
2(−1,−9, 10, 10,−9,−1, 0),

λD = 1
10(−λ1,−12λ1 − 13λ2, 7λ1 − 41λ2 − 6λ3, 6λ1 + 41λ2 − 7λ3,

13λ2 + 12λ3, λ3, 0)

where

λ1 = 3
4h (δm−2 + 5δm−1 + 5δm + δm+1)

2, λ2 = 3
4h (δm−1 + 5δm + 5δm+1 + δm+2)

2,

λ3 = 3
4h (δm + 5δm+1 + 5δm+2 + δm+3)

2.

Using the Crank-Nicholson approach δ = 1
2(δ

n + δn+1) and the forward finite

difference δ̇ = δn+1−δn

∆t in equation (16), we obtain the following (N + 2)× (N + 3)
matrix system

[A + β(B − C) +
λ∆t

2
D]δn+1 = [A + β(B − C)−

λ∆t

2
D]δn (17)

where ∆t is the time step. Applying the boundary conditions (2) to the system(17)
we make the matrix equation square. The resulting matrices are asymmetrically
banded but may be taken depleted septadiagonal so are efficiently solved with
a variant of the Thomas algorithm. Three or four inner iterations are applied
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to δn∗ = δn + 1
2(δ

n − δn−1) at each time in order to improve the accuracy. The

initial vector δ0 is determined from the initial and boundary conditions. So the
approximation (7) can be rewritten for the initial condition

UN(x, 0) =
N+1

∑
m=−1

φm(x)δ
0
m, (18)

where the parameters δ0
m will be determined. Using relations at the knots

UN(xm, 0) = U(xm, 0), m = 0, 1, · · · , N, together with derivative condition

U′
N(x0, 0) = U′(xN , 0) = 0, the initial vector δ0 can be determined from the fol-

lowing matrix equation














−3 0 3
1 4 1

. . .

1 4 1
−3 0 3





























δ0
−1

δ0
0
...

δ0
N

δ0
N+1















=















0
U(x0)

...
U(xN)

0















which can be solved using a variant of the Thomas algorithm.

2.1 Stability analysis

A typical member of the matrix system (17) can be written in terms of the nodal
parameters δn

m as

γ1δn+1
m−2 + γ2δn+1

m−1 + γ3δn+1
m + γ4δn+1

m+1 + γ5δn+1
m+2 + γ6δn+1

m+3 =
γ6δn

m−2 + γ5δn+
m−1 + γ4δn

m + γ3δn
m+1 + γ2δn

m+2 + γ1δn
m+3

(19)

where
γ1 = 1

60 −
β
2 − λ∆t

20 ,

γ2 = 57
60 −

9β
2 − 25λ∆t

20 ,

γ3 = 302
60 +

10β
2 − 40λ∆t

20 ,

γ4 = 302
60 +

10β
2 + 40λ∆t

20 ,

γ5 = 57
60 −

9β
2 + 25λ∆t

20 ,

γ6 = 1
60 −

β
2 + λ∆t

20 .

For the stability analysis it is convenient to use the Fourier method. To apply
Fourier stability analysis, the MEW equation needs to be linearized by assuming
that the quantity U in the non-linear term U2Ux is locally constant. Substituting
the fourier mode δn

j = ξneijkh where k is mode number and h the element size into

the scheme (19) we have

g =
a − ib

a + ib
, (20)

where

a = (302 + 300β) cos( θ
2)h + (57 − 270β) cos(3θ

2 )h + (1 − 30β) cos(5θ
2 ),

b = 120λ∆t sin( θ
2)h + 75λ∆t sin(3θ

2 )h + 3λ∆t sin(5θ
2 )h.

(21)

Taking the modulus of equation(20) , we have |g| = 1. Therefore the scheme is
unconditionally stable.
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3 Numerical examples and results

The purpose of this section is to examine the deduced algorithm using different
test problems concerned with the motion of single solitary wave and interaction
of two solitary waves. We use the L2 and L∞ error norms which are used to show
how good the numerical results in comparison with the exact results defined by

L2 =
∥

∥Uexact − UN

∥

∥

2
≃

√

√

√

√h
N

∑
J=0

∣

∣

∣
Uexact

j − (UN)j

∣

∣

∣

2
, (22)

and the L∞ error norm

L∞ =
∥

∥Uexact − UN

∥

∥

∞
≃ max

j

∣

∣

∣
Uexact

j − (UN)j

∣

∣

∣
. (23)

For the MEW equation, we have calculated following invariants [19]

C1 =
∫ b

a Udx ≃ h ∑
N
J=1 Un

j ,

C2 =
∫ b

a U2 + µ(Ux)
2
dx ≃ h ∑

N
J=1(U

n
j )

2 + µ (Ux)
n
j,

C3 =
∫ b

a U4dx ≃ h ∑
N
J=1(U

n
j )

4.

which correspond to conversation of mass, momentum and energy, respectively.

3.1 The motion of single solitary wave

An exact solution of this problem is given by [4]

U(x, t) = A sec h(k[x − x0 − vt])

where the wave velocity v = A2

2 and k =
√

1
µ . This equation represents a single

solitary wave of amplitude A, initially centered on x0. The initial condition is
taken as

U(x, 0) = A sec h(k[x − x0]).

with x0 = 30 and boundary condition U → 0 as x → ±∞. For this problem the
analytical values of the invariants are [4]

C1 =
Aπ

k
, C2 =

2A2

k
+

2µkA2

3
, C3 =

4A4

3k
. (24)

This problem was solved on the interval 0 ≤ x ≤ 80 with the parameters h =
0.1, ∆t = 0.05, µ = 1, x0 = 30, A = 0.25. The analytical values of invariants
are obtained from equation (24) C1 = 0.7853982, C2 = 0.1666667, C3 = 0.0052083.
The computations are done until time t = 20 to find error norms L2 , L ∞ and
numerical invariants C1, C2, C3 at various times. Changes of invariants C1 and C2

are extremely small and less than 1× 10−7 and 2× 10−7 percent, respectively, and
C3 remain constant during the computer run. Results are documented in Table 1.
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We can easily see that the results of numerical scheme implies the highest accu-
racy and the obtained results are compared with some previous results. Figure 1
shows that the proposed method perform the motion of propagation of a solitary
wave satisfactorily, which moves to the right at a constant speed and preserves
its amplitude and shape with increasing time as expected. Amplitude is 0.25 at
t = 0 which is located at x = 30, while it is 0.249900 at t = 20 which is located
at x = 30.6. The absolute difference in amplitudes at times t = 0 and t = 20 is
1 × 10−4 so that there is a little change between amplitudes.

Table 1: Invariants and error norms for single solitary wave with h = 0.1, ∆t =
0.05, A = 0.25, (0 ≤ x ≤ 80).

t C1 C2 C3 L2 × 103 L∞ × 103

0 0.7853966 0.1666661 0.0052083 0.0000000 0.0000000
5 0.7853966 0.1666662 0.0052083 0.0204940 0.0115654
10 0.7853966 0.1666662 0.0052083 0.0407954 0.0231931
15 0.7853967 0.1666662 0.0052083 0.0607312 0.0347680
20 0.7853967 0.1666663 0.0052083 0.0801465 0.0461218
20[8] 0.7853898 0.1667614 0.0052082 0.0796940 0.0465523
20[10] 0.7853977 0.1664735 0.0052083 0.2692812 0.2569972
20[11] 0.7849545 0.1664765 0.0051995 0.2905166 0.2498925
20[12] 0.7844667 0.1664340 0.0051938 0.1958878 0.1744330

0 10 20 30 40 50 60 70 80
0.00

0.05

0.10

0.15

0.20

0.25
t=0

U(
x,t

 )

x

0 10 20 30 40 50 60 70 80
0.00

0.05

0.10

0.15

0.20

0.25
t=20

U(
x,t

 )

x

Figure 1: The motion of a single solitary wave with h = 0.1, ∆t = 0.05 at t = 0 and
t = 20.

We compute the convergence rates for the numerical method in space sizes hm

and time steps U∆tm with the following formula [8]:

order =
log10(|U

exact − Unum
hm

|/|Uexact − Unum
hm+1|)

log10(hm/hm+1)

and

order =
log10(|U

exact − Unum
∆tm

|/|Uexact − Unum
∆tm+1|)

log10(∆tm/∆tm+1)
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The computed convergence rates for values of space size hm and a fixed value of
the time step ∆tm are given in Table 2. We have clearly seen that the convergence
rates when ∆t is fixed are not as good as for the space sizes. In addition, the time
rate of the convergence for the numerical method is computed with various time
step U∆t and fixed space step h in Table 3. It can be seen that the present method
provides remarkable reductions in convergence rates for the smaller time.

Table 2: The order of convergence at t = 20, ∆t = 0.05, A = 0.25, (0 ≤ x ≤ 80).

hm L2 × 103 order L∞ × 103 order

0.8 55.25579280 - 20.73190012 -
0.4 1.18988053 5.53723708 0.66333732 4.96596584
0.2 0.31651483 1.91047172 0.18136337 1.87736182
0.1 0.08014654 1.98156095 0.04612186 1.97536050
0.05 0.01944857 2.04446052 0.01131649 2.02702414

0.025 0.00542320 1.84244780 0.00312864 1.80853182

Table 3: The order of convergence at t = 20, h = 0.1, A = 0.25, (0 ≤ x ≤ 80).

∆tm L2 × 103 order L∞ × 103 order

0 .8 0.07690387 - 0.05102567 -
0.4 0.07901129 -0.03900261 0.04497304 0.18216281
0.2 0.07986051 -0.01542346 0.04582559 -0.02709304
0.1 0.08008880 -0.00411821 0.04606209 -0.00742641
0.05 0.08014654 -0.00103973 0.04612186 -0.00187082

0.025 0.08016098 -0.00025990 0.04613687 -0.00046943

3.2 Interaction of two solitary waves

In this section, we consider the MEW equation with boundary conditions U → 0
as x → ±∞ and the initial condition

U(x, 0) =
2

∑
j=1

Aj sec h(k[x − xj]),

where k =
√

1
µ which corresponds to two solitary waves. In our computational

work, we first choose the parameters h = 0.1, µ = 1, ∆t = 0.025, A1 = 1, x1 =
15, A2 = 0.5, x2 = 30 over the interval 0 ≤ x ≤ 80 used the earlier papers [4, 8, 9].
The analytic invariants are C1 = 4.7123889, C2 = 3.3333333, C3 = 1.4166667 [11].
The experiment was run from t = 0 to t = 55 to allow the interaction in order to
take place. The absolute difference between the values of the invariants obtained
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by the present method at times t = 0 and t = 55 are ∆C1 = 2.77 × 10−4, ∆C2 =
4.21 × 10−4, ∆C3 = 1.53 × 10−4. Figure 2 shows the interactions of two positive
solitary waves. As it is seen from the figure 2, at t = 5 the wave with larger
amplitude is on the left of the second wave with smaller amplitude. The larger
wave catches up with the smaller one as time increases. Interaction started at
about time t = 25, overlapping processes occurred between times t = 25 and
t = 40 and waves started to resume their original shapes after time t = 40. At
t = 55, the amplitude of larger waves is 0.999487 at the point x = 44.4 whereas

the amplitude of the smaller one is 0.510461 at the point x = 34.7. It is found
that the absolute difference in amplitude is 1.04 × 10−2 for the smaller wave and
0.513 × 10−3 for the larger wave for this algorithm.

Table 4: Invariants for the interaction of two solitary waves h = 0.1, ∆t = 0.025.

A1 = 1, A2 = 0.5, (0 ≤ x ≤ 80) A1 = −2, A2 = 1, (0 ≤ x ≤ 150)
t C1 C2 C3 C1 C2 C3

0 4.7123732 3.3333253 1.4166643 -3.1415737 13.3332816 22.6665313
5 4.7123772 3.3333364 1.4166734 -3.1415444 13.3332606 22.6663984

10 4.7123784 3.3333387 1.4166747 -3.1296528 13.2813648 22.4920480
15 4.7123798 3.3333433 1.4166789 -3.1429737 13.3294715 22.6646333
20 4.7123874 3.3333684 1.4167043 -3.1418189 13.3331502 22.6675394
25 4.7124336 3.3335159 1.4168581 -3.1416556 13.3334961 22.6679597
30 4.7126472 3.3342279 1.4176446 -3.1416828 13.3335695 22.6681547
35 4.7128480 3.3350277 1.4186862 -3.1417274 13.3336177 22.6683287
40 4.7123922 3.3335242 1.4170670 -3.1417743 13.3336616 22.6684994
45 4.7122290 3.3330996 1.4166684 -3.1418214 13.3337043 22.6686696
50 4.7121724 3.3329959 1.4166151 -3.1418686 13.3337466 22.6688398
55 4.7121740 3.3330073 1.4166133 -3.1419159 13.3337885 22.6690099

In addition, we have chosen for the computational work µ = 1, x1 = 15, x2 =
30, A1 = −2, A2 = 1 together with time step ∆t = 0.025 and space step h = 0.1 in
the range 0 ≤ x ≤ 150. The experiment was run from t = 0 to t = 55 to allow
the interaction to take place. Figure 3 shows the development of the solitary wave
interaction. As is seen from the figure 3, at t = 0 a wave with negative amplitude
is on the left of another wave with positive amplitude. The larger wave with the
negative amplitude catches up with the smaller one with the positive amplitude
as the time increases. At t = 55, the amplitude of the smaller wave is 0.974419
at the point x = 52.5, whereas the amplitude of the larger one is −1.988078 at the
point x = 122.8. It is found that the absolute difference in amplitudes is 2.55 ×
10−2 for the smaller wave and 1.19 × 10−1 for the larger wave. The analytical
invariants can be found as C1 = −3.1415927, C2 = 13.3333333, C3 = 22.6666667.
Table 4 lists the values of the invariants of the two solitary waves with amplitudes
A1 = 1, A2 = 0.5 and A1 = −2, A2 = 1. It is observed that the obtained values
of the invariants remain almost constant during the computer run. These values
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Figure 2: Interaction of two solitary waves at different times h = 0.1, ∆t = 0.025, A1 =
1, A2 = 0.5, (0 ≤ x ≤ 80).

are found to be very close with the analytic values.
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Figure 3: Interaction of two solitary waves at different times h = 0.1, ∆t = 0.025, A1 =
−2, A2 = 1(0 ≤ x ≤ 150).
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4 Conclusion

In this paper, a numerical method based on a Petrov-Galerkin method using
quadratic weight functions and cubic B-spline finite elements has been presented
to find numerical solutions of MEW equation. We tested our scheme through sin-
gle solitary wave in which the analytic solution is known and extended it to study
the interaction of two solitary waves where the analytic solution is unknown dur-
ing the interaction. The performance and accuracy of the method were shown by
calculating the error norms L2 and L∞. Also, the obtained results are much better
than those found by [10, 11, 12] and in good agreement with [8]. So the obtained
results show that a Petrov-Galerkin method involving quadratic weight functions
and cubic B-spline finite elements can be used to produce reasonably accurate
numerical solutions of the MEW equation. So, this method is a reliable one for
getting the numerical solutions of the physically important non-linear problems.
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Inönü University Department of Math.
Faculty of Education
44280 Malatya, TURKEY.
e-mail:turabi.geyikli@inonu.edu.tr

Nevsehir University
Department of Math. Science and Art
50300 Nevsehir, TURKEY.
e-mail:sbgk44@mynet.com


